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Abstract Data-trained predictive models see widespread use, but for the most part they are
used as black boxeswhich output a prediction or score. It is therefore hard to acquire a deeper
understanding of model behavior and in particular how different features influence the model
prediction. This is important when interpreting the behavior of complex models or assert-
ing that certain problematic attributes (such as race or gender) are not unduly influencing
decisions. In this paper, we present a technique for auditing black-box models, which lets us
study the extent to which existing models take advantage of particular features in the data
set, without knowing how the models work. Our work focuses on the problem of indirect
influence: how some features might indirectly influence outcomes via other, related features.
As a result, we can find attribute influences even in cases where, upon further direct exami-
nation of the model, the attribute is not referred to by the model at all.Our approach does not
require the black-box model to be retrained. This is important if, for example, the model is
only accessible via an API, and contrasts our work with other methods that investigate feature
influence such as feature selection. We present experimental evidence for the effectiveness
of our procedure using a variety of publicly available data sets and models. We also validate
our procedure using techniques from interpretable learning and feature selection, as well as
against other black-box auditing procedures. To further demonstrate the effectiveness of this
technique, we use it to audit a black-box recidivism prediction algorithm.
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1 Introduction

Machine learning models now determine and control an increasing number of real-world
decisions, from sentencing guidelines and parole hearings [3] to predicting the outcome of
chemical experiments [24]. These models, powerful as they are, tend to also be opaque.
This presents a challenge. How can we audit such models to understand why they make
certain decisions? As conscientious model creators, we should want to know the extent to
which a specific feature contributes to the accuracy of a model. As outside auditors, trying
to understand a system can give us an understanding of the model’s priorities and how it is
influenced by certain features. This may even have legal ramifications: by law, for example,
decisions about hiring cannot be influenced by factors such as race, gender or age.

As model creators, we could build interpretable models, either by explicitly using inter-
pretable structures such as decision trees or by building shadow models that match model
outputs in an interpretable way. In this work, we are interested in auditing a black-box model
from the outside (because the model is proprietary, accessible only through an API or cannot
be modified).

1.1 Direct and indirect influence

Much of the modern literature on black-box auditing (see Sect. 2 for details) focuses on
what we call direct influence: how does a feature (or a group of features) directly affect the
outcome? This is quantified by replacing the feature (or group) by random noise and testing
how model accuracy deteriorates. In this paper, we focus on the different and more subtle
issue of indirect influence.

Consider trying to verify that racial considerations did not affect an automated decision
to grant a housing loan. We could use a standard auditing procedure that declares that the
race attribute does not have an undue influence over the results returned by the algorithm.
Yet this may be insufficient. In the classic case of redlining [21], the decision-making process
explicitly excluded race, but it used zipcode, which in a segregated environment is strongly
linked to race. Here, race had an indirect influence on the outcome via the zipcode, which
acts as a proxy.

Note that in this setting, race would not be seen as having a direct influence (because
removing it doesn’t remove the signal that it provides). Removing both race and zipcode
jointly (as somemethods propose to do) reveals their combined influence, but also eliminates
other task-specific value that the zipcode might signal independent of race, as well as leaving
unanswered the problem of other features that racemight exert indirect (and partial) influence
through.

1.2 Our work

In this paper, we study the problem of auditing black-box models for indirect influence. In
order to do this, we must find a way to capture information flow from one feature to another.
We take a learning theoretic perspective on this problem, which can be summarized via the
principle, first enunciated in [13] in the context of certifying and removing bias in classifiers:
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the information content of a feature can be estimated by trying to predict it from the
remaining features.

How does this allow us to correctly quantify the influence of a feature in the presence
of proxies? Let us minimally modify the data so that the feature can no longer be predicted
from the remaining data. The above principle then argues that we have fully eliminated the
influence of this feature, both directly and in any proxy variables that might exist. If we now
test our model with this obscured data set, any resulting drop in prediction accuracy can be
attributed directly to information from the eliminated feature.

Our main contributions in this work include:

– A technique to obscure (fully and partially) the influence of a feature on an outcome, and
a theoretical justification of this approach.

– A method for quantifying indirect influence based on a differential analysis of feature
influence before and after obscuring.

– An experimental validation of our approach on a number of public data sets, using a
variety of models.

– A technique for interpreting indirect influence and experimental validation of that
approach on a black-box recidivism prediction algorithm.

2 Conceptual context

Work on black-box auditing intersectswith a number of related areas inmachine learning (and
computer science at large), including directions coming from privacy preservation, security,
interpretability and feature selection.We tease out these connections in more detail in Sect. 8.

Here we outline how we see our work in the specific context of the prior literature on
auditing black-boxmachine learningmodels.Modern developments in this area can be traced
back to Breiman’s work on random forests [5], and we highlight two specific recent related
works. Henelius et al. [16] propose looking at variable sets and their influence by studying
the consistency of a black-box predictor when compared to a random permutation of a set.
Datta et al. [11] provide a generalization of this idea, linking it to game theoretic notions
of influence and showing that different choices of probability spaces and random variables
yield a number of different interesting auditing measures. These two papers fundamentally
hinge on the notion of associating each input value with an intervention distribution. These
intervention distributions can be easily shown (in distribution) to obscure attributes. Our
work, on the other hand, will audit black boxes by providing, for any given input point, an
intervention that is deterministic, while guaranteeing (in some settings, see Sect. 4.3) that the
attributes are still obscured over the entire distribution. Our intervention preservesmore of the
signal in the data set and—crucially in some settings—naturally preserves indirect influences
of proxy variables. As we will show in the experiments (see Sect. 5.5), the technique of
Henelius et al. cannot detect proxy variables, and although Datta et al. can use some of their
measures to detect proxy variables, their attribute rankings generally do not reflect the proxy
relationships.

Our methods draw heavily on ideas from the area of algorithmic fairness. The process
by which we eliminate the influence of a feature uses ideas from earlier work on testing
for disparate impact [13]. Again, a key difference is that we no longer have the ability to
retrain the model, and we quantify the influence of a feature rather than merely eliminating
its influence.
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3 Indirect influence

Let f : X → Y be a black-box classification function, where X ⊂ X
(1) × X

(2) . . .X(d) is a
d-dimensional feature space with the i th coordinate drawn from the domain X

(i) and Y is
the domain of outcomes. For example, X = R

d and Y = {−1, 1} for binary classification
on Euclidean vectors. Fix a data set (X, Y ) = {(Xi , yi )} ⊂ X × Y, 1 ≤ i ≤ n and let
Xi = (xi1, xi2, . . . , xid), where xi j ∈ X j for all i . We denote the accuracy of prediction as
acc(X, Y, f ). For example,acc(X, Y, f ) = 1

n

∑
1yi �= f (Xi ) is the standardmisclassification

error. As usual, let the �p norm on R
d be defined as ‖x‖p = (

∑d
i=1 |xi |p)1/p .

We wish to quantify the indirect influence of a feature j on the outcome of classification.
The typical approach to doing this in the auditing literature is to perturb the j th feature xi j of
each Xi in some way (usually by random perturbation), obtaining a modified data set X− j .
Then the influence of j can be quantified by measuring the difference between acc(X, Y, f )
and acc(X− j , Y, f ). (Note that f is not retrained on X− j .)

Unfortunately, randomly perturbing features can disrupt indirect influence in a number
of ways. Firstly, random perturbations could also remove useful task-related information in
proxy features that would degrade the quality of classification. Secondly, this prevents us
from cleanly quantifying the relative effect of the feature being perturbed on related proxy
variables.

Wepropose adifferent approach.Wewill still perturb adata set X to eliminate the direct and
indirect influence of feature j , and measure the change in accuracy of prediction as before.
However, we will do this perturbation in a directed and deterministic manner, organized
around the question: “can we predict the value of feature j from the remaining features?”
Intuitively, if we cannot, then we know that we have correctly eliminated the influence of j .
Moreover, if we do this perturbation “minimally,” then we have changed the data as little as
possible in the process. We will say in this case that we have removed feature j from the data
set and have obscured its influence on X .

3.1 Obscuring data with respect to a feature

We start by defining the error measure we will use to test predictability. Rather than the
standard misclassification rate, we will use the well-known balanced error ratemeasure that
is more sensitive to class imbalance. This is important if a feature has significant skew in the
values it takes. Let supp(Y ) = {y ∈ Y|y ∈ Y } be the set of elements of Y that appear in the
data.

Definition 3.1 (BER) Let f : X → Y be a classifier, and let (X, Y ) = {(Xi , yi )} be a
set of examples. The balanced error rate ber of f on (X, Y ) is the (unweighted) average
class-conditioned error of f :

ber(X, Y, f ) = 1

|supp(Y )|

⎛

⎝
∑

j∈supp(Y )

∑
yi= j 1 f (Xi )�= j

|{i | yi = j}|

⎞

⎠

A feature i has been removed from a data set if we can no longer predict that feature from
the remaining data. This motivates the following definition. Let X (i) = (x1i , x2i , . . . , xni )
denote the column corresponding to the i th feature.

Definition 3.2 (ε-obscure) We define X \ε Xi as the ε-obscure version of X with respect to
featureXi if X (i) cannot be predicted from X \ε Xi . That is, if, for all functions f : X\Xi →
Xi ,
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Auditing black-box models for indirect influence 99

ber(X \ε Xi , X
(i), f ) > ε

We can now define a measure of influence for a feature.

Definition 3.3 ((indirect) influence) The indirect influence II(i) of a feature i on a classifier
f applied to data (X, Y ) is the difference in accuracy when f is run on X versus when it is
run on X \ε Xi :

II(i) = acc(X, Y, f ) − acc(X \ε Xi , Y, f )

Notes The definition of obscurity we use here is adapted from [13], but applied to any feature,
rather than just “protected” ones. In what follows, we will typically treat ε as large (say above
0.5 for binary classification).

4 Computing influence

In this section,wewill introduce amethodwe call gradient feature auditing (GFA) to estimate
indirect influence. Using it, we compute the influence of each feature of the data and order
the features based on their influence. This GFA algorithm works feature by feature: in order
to compute X \ε Xi , we apply an obscuring procedure to each feature j �= i in X. Because
we operate one feature at a time, we cannot guarantee that all influence can be removed (and
therefore estimated). However, we will show that the feature-level procedure is theoretically
sound and in fact generalizes the standard ANOVA test for null hypothesis testing.

Let us start with a simple case: when the feature W = X j to be obscured is numerical,
and the feature O = Xi , we are removing is categorical. Let Wx = Pr(W | O = x) denote
the marginal distribution on W conditioned on O = x and let the cumulative distribution be
Fx (w) = Pr(W ≥ w | O = x).

Define the median distribution A such that its cumulative distribution FA is given by
F−1
A (u) = medianx∈O F−1

x (u) . In [13], it was shown that if we modify the distribution
of W to match A by “moving” values of W so as to mimic the distribution given by A,
then O is maximally obscured, but W also minimally changes, in that A also minimizes
the function

∑
x∈O d(Wx , A) where d(·, ·) was the earthmover distance [27] between the

distributions using the �2 distance d(p, q) = ‖p − q‖2 as the base metric. We call this
procedure ObscureNumerical.

This procedure does not work if features to be obscured and removed are not numerical
and categorical, respectively. We now describe procedures to address this issue.

4.1 Removing numerical features

In order to remove a numerical feature, we must first determine what aspects of the number
itself should be removed. In an optimal setting, we might remove the entirety of the number
by considering its binary expansion and ensuring that no bit was recoverable. However, when
working with most numerical data, we can safely assume that only the higher-order bits of
a number should be removed. For example, when considering measurements of scientific
phenomena, the lower-order bits are often measurement error.

Thus, we bin the numerical feature and use the bins as categorical labels in the previ-
ously described obscuring procedure. Bins are chosen using the Freedman–Diaconis rule for
choosing histogram bin sizes [14].
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4.2 Obscuring categorical features

Our procedure relies on being able to compute cumulative density functions for the fea-
ture W being obscured. If it is categorical, we no longer have an ordered domain on which
to define the cumulative distributions Fw. However, we do have a base metric: the exact
metric 1 where 1(x, w) = 1 ⇐⇒ x = w. We can therefore define A as before,
as the distribution minimizing the function

∑
x∈O d(Wx , A). We observe that the earth-

mover distance between any two distributions over the exact metric has a particularly simple
form. Let p(w), q(w),w ∈ W,

∑
p(w) = ∑

q(w) = 1 be two distributions over W .
Then the earthmover distance between p and q with respect to the exact metric 1 is given
by d(p, q) = ‖p − q‖1. Therefore, the desired minimizer A can be found by taking a
component-wise median for each value w. In other words, A is the distribution such that
pA(w) = medianwWx (w). Once such an A has been computed, we can find the exact repair
by computing the earthmover distance (via min-cost flows)1 between each Wx and A. This
results in fewer changes than merely changing values arbitrarily.

We must create the obscured version of W , denoted Ŵ . Let Ŵw,x be the partition of Ŵ
where the value of the obscured feature is w and the value of the removed feature is x .
We must create Ŵ so as to ensure that |{Ŵ |O = x}| ∈ Z for all values of x ∈ O . We
set |Ŵw,x | = �pA(w) · |{W |O = x}|�. Letting d(w) = |Ŵw,x | for all w ∈ W gives the
node demands for the circulation problem between Wx and A, where supplies are set to the
original counts d(w) = −|Ww,x |. Since |Ŵw,x | ≤ |Ww,x |, an additional lost observations
nodewith demand |Ww,x |−|Ŵw,x | is also added. Theflowsolution describes how to distribute
observations at a per category, per obscured feature value level. Individual observationswithin
these per category, per feature buckets can be distributed arbitrarily. The observations that
flow to the lost observations node are distributed randomly according to distribution A. We
call this procedure ObscureCategorical.

Using the categorical or numerical obscuring procedure appropriately depending on the
data yields our procedure for computing X \ε Xi .

Notes This description assumes that we want to remove all effects of a variable in order to
measure its influence. However, how the influence changes as we remove its effect is also
interesting. Indeed, this is why we refer to the overall process as a gradient feature audit. To
that end, all of the algorithms above can be adapted to allow for a partial removal of a variable.
On a scale of 0–1 where 0 represents the original data, and 1 represents a full removal, we can
remove a fractional part of the influence by allowing the individual conditional distributions
to move partly toward each other.

While the process above produces a score, the induced ranking is also useful, especially
when we compare our results to those produced by other auditing methods, where the score
itself might not be directly meaningful. We illustrate this further in Sect. 5.

4.3 Obscuring, ANOVA and the F-test

We now provide a theoretical justification for our obscuring procedure. Specifically, we show
that if the featureW being obscured has Gaussian conditionals, then our obscuring procedure
will create a data set on which the F-test [7] will fail, which means that the null hypothesis
(that the conditionals are now identical) will not be invalidated. Thus, our procedure can be
viewed as a generalization of ANOVA.

1 This is a straightforward application of the standard min-cost flow problem.
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Consider a data set D consisting of samples (x, y), where y is a class label that takes
the values −1, 1 and the x are drawn from univariate Gaussians with different means and a
shared variance. Specifically, Pr(x |y = i) = N (vi , σ

2). We assume the classes are balanced:
Pr(y = −1) = Pr(y = 1).

Let x̃ be the obscured version of x . It is easy to show that,2 in this case, the obscuring
procedure will produce values following the distribution p(x̃ |y = i) = N (1/2(v−1 +
v1), σ

2).
We apply the F-test to see whether we can tell apart the two conditional distributions for

the two different values of y. Let Sy = {x | (x, y) ∈ D}. The test statistic F is the ratio of
the between-group sample variance and the in-group sample variance. Setμ = (v−1 +v1)/2
and δ = (μ − v−1)

2 = (μ − v1)
2. Thus,

F = nδ

(1/2)
∑

x∈S−1
(x − v−1)2 + ∑

x∈S1(x − v1)2

We note that
∑

x∈S1(x − v1)
2 has expectation n/2σ 2 (and so does the corresponding expres-

sion related to S−1). Using the plug-in principle, we arrive at an estimator for the F statistic:
F = δ

σ 2 . This is the traditional expression for a two-variable, one-way ANOVA: δ is a

measure of the variance that is explained by the group, and σ 2 is the unexplained variance.
We apply this to the obscured distribution. From the remarks above, we know that the

conditional distributions for y = 0, 1 are identical Gaussians N (μ, σ ). We now show that
the positive parameter δ is concentrated near zero as the number of samples increases.

Let x1, . . . , xn be samples drawn from the conditional distribution for y = 0, and similarly
let y1, . . . , yn be drawn from the distribution conditioned on y = 1. Set X = 1

n

∑
xi and

Y = 1
n

∑
yi . Note that E[X ] = E[Y ] = μ, and so E[X − Y ] = 0.

Let δ̂ = (X − Y )2. We first observe that

|X − Y | ≤ |X − E[X ]| + |E[X ] − E[Y ]| + |Y − E[Y ]|
= 2|X − E[X ]|

because X and Y are identically distributed. Therefore,

Pr(δ̂ ≥ ε2) ≤ 4 Pr(|X − E[X ]|2 ≥ ε2)

≤ 4 exp(−nε2/2σ 2)

by standard Hoeffding tail bounds [22]. Therefore, with log n/ε2 samples, the F-test statistic
is with high probability less than ε2, and thus, the null hypothesis (that the distributions are
identical) will not be invalidated (which is equivalent to saying that the test cannot distinguish
the two conditional distributions).

5 Experiments

In order to evaluate the introduced gradient feature auditing (GFA) algorithm, we consider
experiments on four data sets, chosen to balance easy replicability with demonstration on

2 This follows from the fact that the earthmover distance between two distributions on the line is the �1
difference between their cumulative density functions. In this case, it means that the earthmover distance is
precisely the distance between the means.
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domainswhere these techniques are of practical interest. Data sets andGFAcode are available
online.3

Synthetic data We generated 6000 items with 3000 assigned to each of two classes. Items
have five features. Three features directly encode the row number i : Feature A is i , B is 2i
and C is −i . There is also a random feature and a constant feature. We use a random 2

3 : 1
3

training test split.

Adult Income and German Credit data We consider two commonly used data sets from the
UC Irvine machine learning repository.4 The first is the Adult Income data set consisting of
48,842 people, each with 14 descriptive attributes from the US census and a classification of
that person as making more or less than $50,000 per year. Missing data are handled using
Weka’s built-in data imputation. We use the training/test split given in the original data. The
second is the German Credit data set consisting of 1000 people, each with 20 descriptive
attributes and a classification as having good or bad credit. We use a random 2

3 : 1
3 training

test split on these data and the data set described below.

Dark Reaction data The Dark Reaction data [24] are a set of 3, 955 historical hydrothermal
synthesis experiments aiming to produce inorganic–organic hybrid materials. In total, 273
attributes indicate aggregates of atomic and ionic properties of the inorganic components and
semi-empirical properties of the organic components. The classification variable indicates
whether the reaction produced an ionic crystal.

Models We built twomodels that are notoriously opaque to simple examination; SVMs5 [15]
and feedforward neural networks (FNNs).6 We also include C4.5 decision trees7 [23] so that
the audited results can be examined directly in comparison with the models themselves.

The FNN on the synthetic data was trained using a softmax input layer for 100 epochs
with a batch size of 500 and a learning rate of 0.01; no hidden layer was involved. The Adult
Income FNN model was trained using a single softmax input layer for 1000 epochs using
a batch size of 300 and a learning rate of 0.01; no hidden layer was involved. The German
Credit data FNN model was trained similarly to the Adult model, except using a batch size
of 700. The Dark Reaction data FNNmodel was trained using tanh activations for the input
layer and softmax activations in a fully connected hidden layer of 50 nodes; it was trained
using a batch size of 300 for 1500 epochs with a modified learning rate of 0.001.

5.1 Auditing using test data

The work of [13] assumes that X \Xi is used to train a function f : X \Xi → Ŷ so that Ŷ can
be guaranteed to be ε-obscured with respect to Xi . However, in a black-box auditing context,
we cannot retrain the model with the obscured data set. So is Ŷ obscured with respect to Xi

if f : X \ Xi → Ŷ where X \ Xi is the test data and the model f was trained on X? We
answer this question affirmatively, with empirical justification.

3 https://github.com/algofairness/BlackBoxAuditing.
4 https://archive.ics.uci.edu/ml/datasets.html.
5 Implemented using Weka’s version 3.6.13 SMO: http://weka.sourceforge.net/doc.dev/weka/classifiers/
functions/SMO.html.
6 Implemented using TensorFlow version 0.6.0: https://www.tensorflow.org/.
7 Implemented using Weka’s version 3.6.13 J48: http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/
J48.html.
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Fig. 1 Synthetic data that are retrained each time the obscuring procedure are run (first row) as compared to
the same data with the gradient feature auditing method that obscures only the test data and does not retrain
the model. The first column shows this with a decision tree and the second column with an SVM

The intuition behind the obscuring process is that once an attribute W is obscured with
respect to an attribute O , there is no way to learn about O given values of W . In [13], this
property was used to argue that a model that is trained on the obscured data cannot predict
O with low error and therefore cannot discriminate.

In a black-box setting, we cannot control how the model was trained. However, we can
obscure the test data. In that case, even a model trained with knowledge of O cannot take
advantage of this information, because the presence of O is masked in the data through the
obscuring process. Thus, the results of classification will be free of the influence of O .

We can empirically validate this claim by running an experiment where we do retrain
the model (a la [13]) and compare the results to our procedure. We ran this on the synthetic
data described above. The resulting accuracy loss of each feature was close to the same on
the experiments where the model was retrained as it was on the experiments based only on
obscuring the test data (see Fig. 1), thus validating the ability to obscure directly on the test
data without retraining the model.

Despite the similarity in the final scores, when auditing test data and considering a fixed
black-box model the audit reveals some interesting differences between the retrained model
that has a chance to adapt to the obscured data and the fixed model. In Fig. 1, the left column
shows audits on a decision tree model with the retrained audit on the top and the fixed audit
on the bottom. The model considered for the fixed audit has a single node that splits on
the Feature A; thus, Feature A is separated from proxy Features B and C for intermediate
obscurity values as obscuring Features B and C don’t immediately impact the data relative
to the chosen split point. The retrained model shows Features A, B and C, tracking closely
together as the model adapts to take advantage of the remaining signal.
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104 P. Adler et al.

Fig. 2 Obscurity versus accuracy plots for the synthetic data andAdult Income data on eachmodel considered.
First column: synthetic data. Second column: adult income data set. First row: C4.5 decision trees. Second
row: SVMs. Third column: FNNs

5.2 Black-box feature auditing

We now assess the performance of our GFA method. We trained each model on each of the
four data sets. We then ran GFA using the test data for each data set. As we noted in Sect. 4,
we progressively increase the degree to which we obscure a data set by removing a variable.
Specifically, we used partial obscuring values at 0.1 intervals between 0 (no removal) and 1
(full removal) giving us 11 total partially obscured data sets to consider the accuracy change
for. Figures 2 and 3 show the resulting GFA plots.

Synthetic data Beginning with the synthetic data under any of the models, we see that remov-
ing any one of the three main Features (A, B and C) that encode the outcome class causes the

123



Auditing black-box models for indirect influence 105

Fig. 3 Obscurity versus accuracy plots for the German Credit data and Dark Reaction data on each model
considered. First column: German Credit data. Second column: Dark Reaction data. First row: C4.5 decision
trees. Second row: SVMs. Third row: FNNs. Dark Reaction data are shown without a feature legend due to
the large number of features

model to degrade to 50% accuracy as our approach would predict. Removing the constant
feature has no effect on the model’s accuracy, also as expected. The removal of the random
feature causing the model to lose a small amount of accuracy may initially seem surprising;
however, this is also as expected since the random feature also individually identifies each
row and so could be used to accurately train an overfitted model.
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Adult Income data On the Adult Income data set, we see that the ranking changes depending
on the model. Recall that the more “important,” highly ranked features are those that cause
the accuracy to drop the most, i.e., are toward the bottom of the charts. While race is found
to have only a small influence on all the models, the removal of age has a large impact on the
SVM and FNN models, but is much less important to the decision tree. On the FNN model
gradient auditing plot we also see a set of features which when partially removed actually
increased the accuracy of the model. In a model that was not optimal to begin with, partially
obscuring a feature may in effect reduce the noise of the feature and allow the model to
perform better.

German Credit data The results on the German Credit data exhibit an arbitrary or noisy
ordering. We hypothesize that poor models are likely to produce such auditing results. There
are two interrelated reasons why this may be the case. First, since the audit assesses the
importance of a feature using the accuracy of the model, if the model is poor, the resolution
of the audit is degraded. Second, if the model is poor partially due to overfitting, obscuring
features could cause spurious and arbitrary responses. In these contexts, it makes more sense
to consider the change in accuracy under a consistency measure. We explore this further in
Sect. 5.3.

Dark Reaction data The Dark Reaction data show different top ranked features for the three
models, though all three rankings include the minimum Pauling electronegativity and the
maximum Pearson electronegativity in the top ranked cluster of features. These values are
calculated for the inorganic components of the reaction and have been shown to be important
for distinguishing between chemical systems in this data set [24], which this audit confirms.
Features indicating the presence of elements and amounts of metal elements with specific
valence counts similarly allow the models to classify chemical systems. The SVM and FNN
top features include atomic properties of the inorganics that are related to the electronegativity
of an element, so these proxies are correctly also highly ranked. The top ranked decision tree
features additionally include the averagemolecular polarizability for the organic components,
whichwas previously hypothesized as important to synthesis of templated vanadium selenites
explored via this data set [24]. For all threemodels, the lowest ranked descriptors are constants
scored correctly as having no influence to the model.

Running time Running times for these experiments, including time to train the model, time
to do all partially obscured audits and time to write the partially obscured data sets to disk,
varied from 13s on the synthetic data set with the C4.5 decision tree model to just over 3h
for the Dark Reaction data set with the FNN. Since one-time audits are not highly time-
sensitive tasks, and the code was unoptimized, we present these times largely as evidence of
the feasibility of this method.

5.3 Auditing for consistency

The results in Figs. 2 and 3 allow us to both create a ranking of influence as well as evaluate
absolute accuracy of the model on obscured data. However, the German Credit data set
yields very noisy results. To address this, we propose using model consistency: we replace
the original labels with those predicted by the model on unobscured data and then calculate
accuracy as we progressively obscure data with respect to these labels. The unobscured
data will thus always have a consistency of 100%. The new gradient measured will be the
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Fig. 4 Obscurity versus consistency plots for the German Credit data. First row: decision tree model (left)
and SVM (right). Second row: FNN

difference between the 100% consistency at obscurity of 0 and the degraded consistency
when fully obscured.

As shown in Fig. 4, under the consistency measure the accuracy of the German Credit
model degrades smoothly so that a ranking can be extracted. The slight noise remaining is
likely due to the final step of the categorical obscuring algorithm that redistributes “lost obser-
vations” randomly. The resulting ranking is fairly consistent across models, with credit
amount,checking status andexisting credits ranked as the top three features
in all models.

Similar to the German Credit data, the FNN model on the Adult Income data set was not
an optimal model. This means that in the accuracy-based plots in Figs. 2 and 3 obscuring
the features at first leads, counterintuitively, to an increase in accuracy. In the consistency
graph for the FNN model on the Adult Income data (see Fig. 5), we see that while the
ranking derived from accuracy closely resembles the consistency ranking, a cluster of features
(native.country, capital.loss, capital.gain and hours.per.week) had
been ranked above occupation and marital.status and the consistency ranking
moves that cluster down in rank.

5.4 Evaluating with respect to a direct influence audit

In order to determine whether GFA is correctly determining the indirect influence of a model,
we will first develop a simple method of detecting direct influence and then examine the
outlying attributes for which our indirect audit differs.
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Fig. 5 Obscurity versus
consistency for Adult Income
data modeled by an FNN

Direct influence audit The first step of the direct influence audit method we will use is the
creation of an interpretable model of the model. By a “model of a model,” we mean that
we should (1) train the model f on training data (X, Y ), (2) determine new labels Ŷ from
the predicted outcomes f (X) and (3) overfit an interpretable model I ( f ) to these predicted
labels (as done in [4]). (This idea is similar tomodel compression, but without the need to find
new test data [6].) Assuming that the model resulting from this procedure has high accuracy
on Ŷ , we now have an interpretable model of our model.

For the SVM and decision tree models trained on the each of the four data sets, we trained
an unpruned C4.5 decision tree model of the model. With these interpretable models of a
model, unfortunately a manual comparison to the feature ranking is still impossible due to the
size of the resulting trees. We create feature importance scores by calculating the probability
that each feature appeared on the path from the root to the leaf node containing an item from
the training set. This ranking is weighted by the number of items at each leaf node. Any
feature appearing at the root node, for example, will have a probability of 1 and come first
in the derived ranking. This gives us the direct influence audit results we will compare to.

Synthetic data Beginning with the simple decision tree model for the synthetic data, looking
at the decision tree reveals that only Feature A is used explicitly—the decision tree has a
single split node.Whenwe create a decision treemodel of this model, to confirm themodel of
a model technique, the result is exactly the same decision tree. Creating a decision tree model
of the SVM model, we find again that there is a single node splitting on Feature A. Both
models of models have 100% accuracy on the training set (that they were purposefully overfit
to). The probability ranking of all of these models for the synthetic data contains Feature A
first with a probability of 1 and all remaining features tied after it with a probability of 0
(since only Feature A appears in the decision tree). Since the probability ranking is a direct
audit, it is not surprising that it does not score proxy variables B and C highly.

Comparison to a direct influence audit To evaluate the model of a model probability ranking
in comparison with the GFA accuracy ranking, we compare the feature rankings on three
data sets (Adult, German and Dark Reactions). Specifically, we collect the three generated
rankings into one vector for each of the feature ranking procedures and run a Spearman
rank correlation statistical test. We find a combined sample rank correlation of 0.263 (a 95%
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Fig. 6 Model of a model decision tree probability rankings versus GFA consistency scores shown with a
linear regression and 95% confidence interval. The outlying features contain proxy information in the data set

Table 1 Synthetic data
comparison between Henelius et
al. and GFA

C4.5 Decision tree SVM

Feature Henelius et al. GFA Henelius et al. GFA

A 0.50 0.50 0.87 0.50

B 1.0 0.53 0.87 0.50

C 1.0 0.53 0.88 0.50

Random 1.0 0.96 0.99 0.97

Constant 1.0 1.0 1.0 1.0

All models achieve 100%
accuracy, so GFA consistency
and accuracy are the same

bootstrap confidence interval of [0.128, 0.387] over 10,000 bootstrap samples), and find also
that we can reject the null hypothesis (of no correlation), with p < 0.002. When we compare
the GFA ranking based on model consistency (cf. Sect. 5.3), the results are similar to the
ones based on model accuracy. This provides evidence that our feature auditing procedure
closely matches a direct influence audit overall.

To consider the cases where these rankings don’t match, we look at Adult Income under
the C4.5 decision tree model. As shown in Fig. 6, linear regression confirms that most
features have similar scores, but there are a few important outliers: marital-status,
education, race, age and capital gain. We hypothesize that the information in
these features can be reconstructed from the remaining attributes, and so they are scored
differently under an indirect influence audit. We explore this hypothesis next.

5.5 Comparison to previous work

Henelius et al. [16] provide a different technique to solve this black-box feature auditing prob-
lem. They focus on determining not only the influence scores associated with each feature,
but also groupings of features that are more influential as a group than they are individually
(i.e., have mutual influence on a model’s outcomes) and use the consistency measure as the
score. The results of running their algorithm8 on the synthetic data we considered here is
shown in Table 1.

These scores on the synthetic data set illuminate the key difference between the Henelius
et al. work and GFA: while Henelius et al. focus on auditing for direct influence on a model,
GFA includes both direct and indirect influence through proxy variables. For example, the
C4.5 decision tree created on the synthetic data is a very simple tree containing one node
that splits on the value of Feature A. Henelius et al. correctly show that A is the only feature
directly used by the model. However, GFA additionally shows that Features B and C are

8 Available at: https://bitbucket.org/aheneliu/goldeneye/.
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Fig. 7 Henelius et al. influence scores versus GFA consistency scores shown with a linear regression and
95% confidence interval. The outlying features contain proxy information in the data set

Table 2 Adult Income data comparison between Henelius et al. and GFA consistency and accuracy scores
for a C4.5 decision tree model

Feature C4.5 audit scores Feature predictability

Henelius et al. GFA cons. GFA acc. REPTree C4.5 or M5

Capital gain 0.94 0.56 0.55 0.16 0.21

Education 0.98 0.65 0.65 1.0 1.0

Education-num 0.92 0.65 0.65 1.0 1.0

Capital loss 0.98 0.71 0.68 0.09 0.16

Hrs per week 0.96 0.78 0.74 0.44 0.49

Age 0.94 0.80 0.76 0.65 0.68

Workclass 0.98 0.80 0.76 0.11 0.16

Fnlwgt 0.99 0.83 0.77 0.15 0.22

Marital-status 0.87 0.82 0.77 0.74 0.76

Native country 1.0 0.82 0.78 0.22 0.28

Occupation 0.90 0.84 0.79 0.21 0.17

Relationship 0.99 0.84 0.81 0.69 0.70

Sex 1.0 0.87 0.82 0.62 0.62

Race 1.0 0.92 0.83 0.25 0.23

Feature predictability scores are correlation coefficient or kappa statistic (for numerical or categorical features,
respectively) when predicting that feature from the remaining features using two tree-based models

proxies for A (recall that B is defined as two times Feature A and C is defined as negative
one times Feature A).

For a real-world comparison to Henelius et al., we consider the Adult data set under a
C4.5 decision tree model. The scores and rankings generated by Henelius et al. do not match
those generated by GFA. Figure 7 shows that features marital-status, fnlwgt, sex,
education, education-num and capital gain are outliers. In order to determine
whether this is due to the presence of proxy variables, or variables that are more complexly
encoded in the remaining attributes by the decision tree, we then used two tree-based models
to predict each feature from the remaining features (see Table 2).9 Models were built on the
test set (using a 2

3 : 1
3 training test split) in order to replicate the data used for the audit.

Reported predictability scores are the correlation coefficient for numerical features and the
kappa statistic for categorical features.

9 Weka’s REPTree, J48 and M5P models were used for this analysis with the default model-building param-
eters. J48 was used to predict categorical features and M5P was used for numerical features. REPTree can
handle both categorical and numerical features.
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Looking at the resulting feature predictability scores, we see that education and
education-num are both perfectly reconstructable from the remaining attributes. This
is not surprising since education-num is a numerical representation of education and
thus a perfect proxy. The GFA consistency and accuracy measures both have education
and education-num as tied for an importance score of 0.65, thus confirming that GFA
handles indirect influence, while Henelius et al. has education with a score of 0.98 while
education-num scores 0.92.

The features marital-status and relationship are both highly, but not exactly,
predictable from the remaining attributes. This is likely because these are close, but not
exact, proxies for each other. For example, the relationship status “Unmarried” may mean
a marital status of “Divorced,” “Never married,” or “Widowed.” The GFA scores for
marital-status andrelationship show they are of similar importance to themodel,
with consistency scores of 0.82 and 0.84, respectively (ranked 8.5 and 11.5 in importance),
and accuracy scores of 0.77 and 0.81 (ranked 8.5 and 12). The Henelius et al. scores are less
similar at 0.87 (ranked most important) and 0.99 (ranked 10.5). The GFA closely matching
scores shows the procedure accounts for indirect influence of a feature, while Henelius et al.
does not.

Recent work by Datta et al. [11] (discussed in more depth in Sect. 2) presents a similar
approach, focusing on direct influence, that can additionally identify proxy variables. Identi-
fying the influence of proxy variables using this method proceeds in two steps: first, the proxy
variables are identified; then, their individual direct influence in the ranked list is found. Con-
sidering theAdult data set, but under a differentmodel, theyfind thatmarital-status and
relationship are both proxies for sex. Their ranking finds that marital-status is
ranked first for influence,relationship third and sex ninth. Additionally, their influence
score for relationship is under half of that for marital-status, and the influence
score for sex is under half of that for relationship. Thus, similar to Henelius et al.,
the Datta et al. two step procedure does not account for the shared indirect influence of
marital-status and relationship on the outcome.

5.6 Comparison to feature selection

Finally, we examine the relation between our auditing procedure and feature selection meth-
ods. While GFA is fundamentally different from feature selection since (a) features may
not be removed from the model and (b) the model may not be retrained, due to their similar
ranked feature results, we compare the resulting GFA ranking to a feature selection generated
ranking. Feature selectionwas applied to the synthetic, Adult Income andGermanCredit data
sets. It was performed using a wrapper method (around both C4.5 decision trees and SVMs)
and a greedy forward search through attribute subsets to generate a ranking.10 For both the
Adult Income and German Credit data sets, feature selection created identical rankings for
both decision trees and SVMs.

Spearman’s rank correlation is a nonparametric test of the relationship between two rank-
ings, in this case the rank orderings generated by feature selection and by GFA. The synthetic
data had a strong correlation between these rankings, with Feature A ranked first by all meth-
ods, though given the small feature size this is not statistically significant. The Adult Income
and German Credit data set ranking comparison correlations were both weak. This was not

10 Feature selectionwas implemented inWeka version 3.6.13 usingWrapperSubsetEval andGreedy StepWise
on J48 and SMO models. Default options were used, save for the generation of a complete ranking for all
features.
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improved when using the consistency feature ranking instead and in the case of the C4.5
decision tree was an order of magnitude weaker.

The weak correlation is not surprising since the two methods ask philosophically different
questions. We are interested in the importance of a feature to a specific instance of a model,
while feature selection considers importance with respect to an as-yet uninstantiated model.
In addition, feature selection gives an indication of the direct influence of a feature, while
GFA is focused on indirect influence.

6 Analysis of COMPAS recidivism prediction software

Increasingly, machine learning algorithms are being used to predict whether a defendant in
a criminal case will re-offend. These models, such as one developed by Northpoint called
COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), are then
used by judges to help inform sentencing decisions. Recent work by ProPublica [3] collected
an extensive data set containing criminal records of 7215 people from Broward County,
Florida, including demographic information such as their age, sex and race, juvenile record
information such as the counts of felonies and misdemeanors, information associated with
the charge they were arrested for, and the COMPAS score label (low, medium or high) at
booking for each of these people. The ProPublica analysis, comparing these scores against
the records of whether the defendants actually recidivated over the following two years,
found that the scores were biased against African-Americans in the sense that, of the people
who were misclassified, African-Americans were more likely to receive a misclassification
indicating that they were high risk and not go on to re-offend, while white defendants were
more likely to receive a misclassification indicating that they were low risk and then go on
to recommit. This work has spurred an interesting discussion about definitions of fairness
and the impossibility of achieving all types of fairness when the base rates of arrest (how
recidivism is measured) are different for different demographic groups [9,19]. To the best of
our knowledge, COMPAS is the only recidivism model in active use to have received any
public scrutiny. Given its potential impact in human lives, it is an important case study.

These discussions of fairness center around different proportions of outcomes across
positive and negative classes for different demographic groups. Here, we are interested in
auditing the COMPAS algorithm to start to answer the question of how the COMPAS model
made these decisions, with the goal of allowing a person charged with auditing the algorithm
to understand the potential for discrimination in the model. Our goal will be to demonstrate
the techniques by using this interesting examplemodel and data set, not to come to a definitive
understanding of how the COMPAS algorithm works. This limitation is due to the lack of
access to run the COMPAS algorithm, or even to access the specific features that COMPAS
used. Our auditing methods described so far assume that we have access to both the inputs
and the outputs of an algorithm and the ability to run the algorithm ourselves on purposefully
chosen inputs. Instead, here, we have access to the COMPAS scores (outputs) and a modified
set of inputs. We don’t have the ability to rerun the algorithm. Under these constraints, we
will aim to give a demonstration of how these techniques might be used in practice.

Data and model preparation ProPublica’s data include records for 7215 individuals, but
they suggest11 filtering the data set down to 6172 individuals to include only those people
who have complete data—they contain a COMPAS score, and it has been at least two years

11 The ProPublica methodology can be found here: https://github.com/propublica/compas-analysis.
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Fig. 8 Obscurity versus accuracy charts for the ProPublica data set when the outcome predicted is the
COMPAS score label (low, medium or high). The model used to predict this COMPAS score is a C4.5
decision tree (left) or an SVM (right)

since that score was calculated (so the two year recidivism outcome is valid). Individuals
with traffic offenses are removed, as are individuals who don’t have a clear COMPAS score
assessment associated with the arrest record. Additionally, we exclude date features, arbitrary
strings and other features such as name or case number that are specific to each individual.
We keep only the following 10 features in our training set: the juvenile felony count, juvenile
misdemeanor count, other juvenile records count, race, sex, a count of the prior records, the
charge description for this arrest, the charge degree (felony or misdemeanor) for this arrest,
age and a categorical version of age (less than 25, 25–45 and greater than 45). Our prediction
problem focuses on replicating the COMPAS score—we predict the low-/medium-/high-
score label for the regular recidivism problem (and not for violent recidivism). We randomly
choose two-thirds of the data for training and one-third for testing.

6.1 Auditing COMPAS for indirect influence

We begin our analysis of the COMPAS model by using our developed techniques to perform
an indirect influence audit using the ProPublica developed input and the COMPAS low-
, medium- and high-score labels as the predicted output. We use both decision trees and
SVMs to model the COMPAS model, and perform the audits with respect to these models of
the model. The audit results are shown in Fig. 8.

Interestingly, the decision tree and SVM audits of the COMPAS model are different.
Neither is able to perfectly predict the score outcomes, likely because we don’t have all the
features that were used to create these outcomes. Juvenile charges and age are shown to
have a large impact under both of these models. Charge degree (felony or misdemeanor),
age category (below 25, 25–45 and above 45) and sex have very little influence under either
model. Race, on the other hand, is found to be important under both models of COMPAS
but found to have more influence for the decision tree (0.24 out of an accuracy of 0.63) than
the SVM (0.06 out of 0.63). Ideally, we’d be able to examine how race indirectly impacts a
model of COMPAS more specifically. We will build up to this examination in what follows.

6.2 Interpretable indirect influence

In order to develop an interpretable model that we will use later to examine the indirect
influence of race on our model of COMPAS, we use the CN2 rule induction algorithm [10] to
develop the full rule set, again using CN2 to predict the COMPAS score labels. Unfortunately,
despite the interpretability of these rules, it is very hard to reason about whether there is

123



114 P. Adler et al.

indirect influence based on race in this model. In response, we introduce a procedure to
create and score additional modified rules with respect to their indirect influence based on
race. Our goal with this procedure is to be conservative in our influence scoring. We aim to
determine which rules of the original set do not have indirect influence based on (say) race
and therefore which remaining rules have potential indirect racial impact. An outline of this
procedure to audit rules for indirect influence is as follows:

1. Create a rule set modeling the outcomes. The CN2 rule models we train are generated
using Orange.12

2. Create an obscured version of the training data with respect to the chosen removed class
(in this case, race).

3. Convert the original rules into obscured rule sets so that rule variable values are trans-
formed to the new obscured values. Do this for all combinations of features and for all
possible obscured values. In what follows, we will use “Feature_A_noFeatureB” to mean
a modified version of Feature A that has been obscured with respect to Feature B. For
example, “Feature_Age_noRace” denotes the age feature obscured with respect to race.

4. Determine a quality score and an influence score for each rule.
5. Choose some threshold ε. Consider all transformed rules that are within ε quality of the

original rule.
6. Output the rule set consisting of the rules chosen with the lowest potential indirect

influence score from the set within ε quality of the original rule.
7. Any rule in the output set that contains an unobscured feature has potential indirect racial

influence.

Obscuring rule sets In order to create obscured and partially obscured versions of the CN2
rules, we need tomap each feature and associated value in the rule to its obscured counterpart.
Since we would like to examine the best quality rule with the least potential for indirect
influence, we will create each obscured feature independently, so that all combinations of
obscured and unobscured features in the rule set are considered. The value of chosen obscured
feature value needs to bemapped to the new obscured value, and there are potentiallymultiple
of these, one per value of the removed attribute. For numerical attributes, the boundary value
(e.g., 3 if the rule includes FeatureA <= 3) is mapped to its possible obscured values. We
consider all of these values in the possible generated rules.

Scoring rule quality Each rule is scored for quality using the Laplace heuristic: quality =
correct+1
total+k

where total is the number of instances covered by the rule, correct is the number
of those that were correctly classified and k is the number of classes in the classification
problem.

Scoring indirect rule influence Given a rule with m features fi, we are interested in being
able to compare the indirect influence of this rule based on the removed feature to the original
rule. We calculate the indirect rule influence as

∑m
i=1 influence( fi) where influence( fi) is

the amount of indirect influence with respect to the removed feature as determined using our
described auditing method, and influence( fi) is defined as 0 when the obscured version of fi
is used. These influence scores will only be used to compare rules that have the same number
of features, so by summing the influence scores per feature (instead of, for example, using the
maximum) we make sure a rule with multiple potentially influential features is appropriately
marked as having higher influence without suffering from normalization issues.

12 http://orange.biolab.si/toolbox/.
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Table 3 Original rules for the CN2 model of the decision tree model on the synthetic data are given first

Original Rules Quality

IF Feature_A >= 3001 THEN Outcome = B 1.0

IF TRUE THEN Outcome = A 1.0

Possible Rules—Constant removed Quality Influence

IF Feature_A >= 3001 THEN Outcome = B 1.0 0.5

IF Feature_A_noConstant_Feature >= 3001

THEN Outcome = B 1.0 0.0

Possible Rules—Feature A removed Quality Influence

IF Feature_A >= 3001 THEN Outcome = B 1.0 0.5

IF Feature_A_noFeature_A >= 3593 THEN Outcome = B

THEN Outcome = B 0.5 0.0

Possible Rules—Feature B removed Quality Influence

IF Feature_A >= 3001 THEN Outcome = B 1.0 0.5

IF Feature_A_noFeature_B >= 3001 THEN Outcome = B

THEN Outcome = B 0.56 0.0

These are followed by possible rules and scores to replace the rule IF Feature_A >= 3001 THEN
Outcome = B when obscured variables with respect to a removed feature are considered. The removed
features considered are the constant feature, Feature A and Feature B. Influence scores are calculated with
respect to the rule features as described above

6.3 Experiments on synthetic data

In order to validate this new method, we first considered the rules generated for the decision
tree and SVM models of our synthetic data set. Recall that Features A, B and C in the
synthetic data are perfect proxies for each other, since each can be used by itself to exactly
determine the outcome. In addition, the decision tree model of these data includes a single
node determining the outcome directly based on Feature A. The output from using CN2 to
model the decision tree model of the synthetic data also uses only Feature A and is given in
Table 3.

For the purposes of this smaller synthetic data set, we will avoid choosing a specific value
for ε and instead look at all possible full and partially obscured rules that could be generated
and evaluate them for quality and influence. We obscure the rules with respect to the constant
feature, Feature A and Feature B (see Table 3). We expect that the rule quality will not
go down when the rules are obscured with respect to the constant feature, while the rule
quality will decrease to essentially random when the rules are obscured with respect to both
Feature A (demonstrating a removal of direct influence) and Feature B (indirect influence).
As expected, we see that we can decrease the potential influence of the constant feature on
the rule without changing the quality, while decreasing the potential influence of Features A
and B on the rule also decreases the quality. From this, we can see that the rule has indirect
influence based on Features A and B that impacts the resulting predictions.

6.4 COMPAS results

We used CN2 to create a model of the low-/medium-/high-score results and found that we
were able to model them with an accuracy of 75%. Sixty-nine rules were created and race
was explicitly used in 36 of these rules. But assuming that these rules represent the entirety of
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discrimination in the rule set is misleading in two ways. First, it may be possible to obscure
the rule with respect to race and not have the quality of the rule suffer—in that case, we
could consider the original rule nondiscriminatory. Second, there may be other rules that
have indirect influence based on race that should be marked as discriminatory and wouldn’t
be by just identifying rules containing race directly. In order to investigate both of these
possibilities, we perform the interpretable indirect influence audit described above, using the
influence scores as calculated assuming the decision tree model.

Example rule examinations Let us look more closely at how this technique impacts our
examination of a single rule:

IF priors_count<=3 AND age>=50 AND race !=African-American
AND

c_charge_desc=!Grand Theft in the 3rd Degree AND
c_charge_desc!=Possession of Cocaine

THEN score_text=Low

This rule has a quality score of 0.99 when evaluated on the test set, and its influence score is
0.79. The expansion of this rule to consider all possible obscured and unobscured versions
of these 5 features along with all possible mappings to the corresponding obscured values
generates 1521 versions of this rule. In total, 162 of the resulting rules have 0 influence based
on race, i.e., all features considered are the obscured versions of the feature for different
possible obscured values. All the rules with 0 racial influence also have a quality of 0.33, or
the equivalent of choosing low/medium/high randomly. For all reasonable values of ε, i.e.,
for any values that do not admit a quality of 0.33, the rule with the lowest influence score
still retains an explicit dependence on race. For example, with ε = 0.1, the rule with quality
within 0.1 of the original rule that has the lowest potential influence based on race is:

F priors_count-norace<=5 AND age-norace>=47 AND
race!=African-American AND
c_charge_desc-norace!=Grand Theft in the 3rd Degree AND
c_charge_desc-norace!=Felony Battery (Dom Strang)

THEN score_text=Low

This rule has a test set quality score of 0.90 and an influence score of 0.24, all of which is due
to the direct influence of race on the outcome. This shows us a specific subset of individuals
for whom the recidivism predictor acts differently based on race.

But the presence of race in a rule does not always indicate that race influences the outcome.
For example, this rule has a quality score of 0.69 and an influence score of 0.39:

IF age_cat==Greater than 45 AND priors_count<=15 AND
race==Caucasian AND
c_charge_desc!=Grand Theft in the 3rd Degree AND sex!=

Female
THEN score_text=Low

One version of this rule with each feature fully obscured is:

IF age_cat-norace==Greater than 45 AND priors_count-norace<=5
AND

race-norace==African-American AND sex-norace!=Male AND
c_charge_desc-norace!=Grand Theft in the 3rd Degree

THEN score_text=Low
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The quality score actually goes up on the test set to 0.82, while the influence score is 0,
showing that despite the explicit reference to race in the rule, race does not have a large
impact on the part of the model’s outcome dictated by this rule.

High influence rules One way to achieve insight into the potential discriminatory harm of
the data set is to consider the rule with highest potential influence based on race (influence
score 0.73, ε = 0.01). That rule is:

IF juv_other_count-norace>=1 AND race!=African-American AND
age_cat!=25-45 AND race!=Hispanic AND race!=Other

THEN score_text=Medium

In this rule, the explicit determination based on race is retained for all values of ε small
enough to avoid a quality score of 0.33 indicating random choice. Here, that means that the
determination of a medium COMPAS risk score for White and Asian defendants between 25
and 45 with at least one juvenile infraction is heavily influenced by race (also implying that
African-American and Hispanic defendants with similar characteristics are denied a medium
risk score).

Analysis of the resulting rule set Considering the rule set as a whole, we are especially
interested in determining, for various values of ε, how many rules still retain influence based
on race. Recall that 36 of the 69 rules original depended explicitly on race. For ε = 0.01,
this decreases to 18 rules based explicitly on race, showing that the other 18 rules were
not as heavily dependent on racial influence as might have been assumed from the explicit
reference to race in the rule. For larger ε = 0.1, there are still 17 rules based explicitly on
race, indicating that these remaining rules do influence the outcome based on race. Similarly,
for ε = 0.01 there are 50 of the 69 rules that retain some influence based on race, while at
ε = 0.1 this decreases to 39 rules with nonzero influence scores.

Limitations, threats to validity In this section, aswell as in Sect. 5, we have used the technique
of building a model of a model to assess the behavior of data-driven automated systems.
Although Sect. 5.3 indicates that such models of models match existing models relatively
well, there are limitations to the method which we want to point out. First, it is conceivable
that the actual model used did not employ the features highlighted by the model of a model
technique. Still, this threat to validity is mitigated by our method’s ability to pinpoint indirect
influence, since indirect influence happens when the model uses any of the features that
are correlated with one another. This points to a second threat to validity, which is indirect
influence is dependent on a distribution of training and test examples. If the data distribution
substantially changes, this will have an effect on our audit. However, in the case of such
changes, the entire decision process is likely to have to change as well. We envision our
model assessment method as a tool to suggest further investigations, and not as a single
source of determination of influence or discrimination, especially if the accuracy of the
model of model is substantially lower than that of the original model.

7 Discussion

Feature influence is a function of the interaction between model and data. A feature may be
informative but not used by the classifier, or conversely might be a proxy and still useful.
Thus, influence computation must exploit the interaction between model and data carefully.
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If the obscured and unobscured data sets are similar, then the classifier can’t have found
useful signal and the classifier’s outputs won’t change much under our audit. If there were
significant differences and the classifier used these differences in its model, then gradient
feature auditing will show a change in the classifier behavior, as desired. Finally, if there
were differences between attribute subgroups but those differences are irrelevant for the
classifier, then gradient feature auditing will not show a large change in classifier behavior.
This “sensitivity to irrelevance” is an important feature of a good auditing procedure.

It remains a challenge to effectively compare different approaches for auditing models
since, as we have seen, different approaches can have points of agreement and disagreement.
Our obscuring procedure prefers to use a computationalmetaphor—predictive power—rather
than a statistical metaphor such as hypothesis testing, but it seems likely that there are ways
to relate these notions. Doing so would provide a combined mathematical and computa-
tional framework for evaluating black-box models and might help unify the different existing
approaches to performing audits.

8 Related work

In addition to early work by Breiman [5] and the recent works by Henelius et al. [16] and
Datta et al. [11], a number of other works have looked at black-box auditing, primarily for
direct influence [12,28,29,31]. There are potential connections to privacy-preserving data
mining [2]; however, the trust model is different: in privacy-preserving data mining, we do
not trust the user of the results of classification with sensitive information from the input.
In our setting, the “sensitive” information must be hidden from the classifier itself. Another
related framework is that of leakage in data mining [18], which investigates whether the
methodology of the mining process is allowing information to leak from test data into the
model. One might imagine our obscuring process as a way to prevent this: however, it might
impair the efficacy of the classifier.

Another related topic is feature selection, as we discussed in Sect. 5.6. From a technical
standpoint (see [8]), thewrapper approach to feature selection (inwhich features are evaluated
based on the quality of the resulting prediction) is most related to our work. One such method
is stepwise linear regression, inwhich features are removed from input for a generalized linear
model based on their degree of influence on themodel tomake accurate predictions,measured
using a correlation coefficient.

Model interpretability focuses on creating models that are sparse, meaningful and intu-
itive, and thus, human-understandable by experts in the field the data are derived from [30].
The classic example of such models are decision trees [23], while recently supersparse linear
integer models (SLIMs) have been developed as an alternative interpretable model for clas-
sification [30]. New work by Ribeiro et al. [25] trains a shadow interpretable model to match
the results of a given classifier. For neural networks, various approaches based on visualizing
the behavior of neurons and inputs have also been studied [17,20,32].

Finally, we note that a compelling application for black-box audits of indirect influence
includes considerations of algorithmic fairness [26]. Understanding the influence of variables
can help with such a determination.

9 Conclusion

In this paper, we have shown that it is possible to audit models even in the presence of proxy
variables and that it is possible to detect such indirect influence in a variety of settings. The
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method we introduce depends critically on obscuring features and measuring the sensitivity
of models to such changes. Because the obscuring process is dependent on the distribution of
data, this presents important questions for future research. Specifically,we are interested in the
interplay between training and test distributions, the models under scrutiny and definitions of
influence, discrimination or lack thereof. As different techniques to assess predictive models
make fundamentally different assumptions, we see the investigation of precise definitions as
enabling novel and improved methods for auditing black models.
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